6 research outputs found

    Application Description and Policy Model in Collaborative Environment for Sharing of Information on Epidemiological and Clinical Research Data Sets

    Get PDF
    BACKGROUND: Sharing of epidemiological and clinical data sets among researchers is poor at best, in detriment of science and community at large. The purpose of this paper is therefore to (1) describe a novel Web application designed to share information on study data sets focusing on epidemiological clinical research in a collaborative environment and (2) create a policy model placing this collaborative environment into the current scientific social context. METHODOLOGY: The Database of Databases application was developed based on feedback from epidemiologists and clinical researchers requiring a Web-based platform that would allow for sharing of information about epidemiological and clinical study data sets in a collaborative environment. This platform should ensure that researchers can modify the information. A Model-based predictions of number of publications and funding resulting from combinations of different policy implementation strategies (for metadata and data sharing) were generated using System Dynamics modeling. PRINCIPAL FINDINGS: The application allows researchers to easily upload information about clinical study data sets, which is searchable and modifiable by other users in a wiki environment. All modifications are filtered by the database principal investigator in order to maintain quality control. The application has been extensively tested and currently contains 130 clinical study data sets from the United States, Australia, China and Singapore. Model results indicated that any policy implementation would be better than the current strategy, that metadata sharing is better than data-sharing, and that combined policies achieve the best results in terms of publications. CONCLUSIONS: Based on our empirical observations and resulting model, the social network environment surrounding the application can assist epidemiologists and clinical researchers contribute and search for metadata in a collaborative environment, thus potentially facilitating collaboration efforts among research communities distributed around the globe

    Evidence for a “Little Ice Age” glacial advance within the Antarctic Peninsula – Examples from glacially-overrun raised beaches

    Get PDF
    Recognition of how dynamic the Antarctic ice sheets and glaciers were during the late Holocene has grown in recent years. Proxy data suggests the presence of Neoglacial advances but few moraines or glacial features from this time have been dated compared to glaciated landscapes of the Northern Hemisphere. Debate continues on whether parts of Antarctica experienced glacial advance at the same time as the “Little Ice Age” (LIA), which is well-documented in the Northern Hemisphere. We provide new evidence for late Holocene glacial fluctuations at three locations along the Antarctic Peninsula. A moraine or till sheet from a tidewater glacier cross cuts a series of dated raised beaches at Tay Head, Joinville Island along the northwestern Weddell Sea. At Spark Point, on Greenwich Island, a glacier has overrun Holocene raised beaches and a shell-bearing marine deposit is reworked into a glacial diamicton. A third site in Calmette Bay within the larger Marguerite Bay also contains a recent moraine that cuts across a series of dated raised beach ridges. The new ages constraining these glacial advances are in broad agreement with the handful of other existing ages on moraines and proxy records suggestive of cooler conditions within the Antarctic Peninsula. Combining available timing constraints into a Bayesian model yields an age of 400 to 90 cal BP (1550–1860 CE; 95%) for the LIA across the Antarctica Peninsula. Consideration of a two-phase glacial advance within our Bayesian framework does fit more of the data from across the Antarctic Peninsula and suggests advances from 575 to 330 cal BP (1375–1620 CE) and 400 to 50 cal BP (1550–1900 CE). However, more work is needed to determine if such a two-phase advance occurred. Regardless, its similar timing within the Antarctic Peninsula to that of the Northern Hemisphere supports recent assertions of a volcanic or solar forcing for the LIA. These recent readvances also provide a possible mechanism for changes in the rates of Holocene relative sea-level change recorded across the Antarctic Peninsula suggesting that the Antarctic ice sheets may have been more responsive to past climate changes than previously thought and glacial isostatic adjustment from the LIA and possibly other Holocene glacial oscillations is superimposed upon the longer relaxation from the Last Glacial Maximum
    corecore